

AC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Square Wave Clock $\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$	$\begin{gathered} \hline 2 \\ 1.5 \end{gathered}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Clock Rise or Fall Time	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			15	$\mu \mathrm{s}$
$t_{W R}$	Reset Pulse Width	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 320 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \end{aligned}$		ns ns
$t_{\text {WLE }}$	Latch Enable Pulse Width	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 320 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & \hline \end{aligned}$		ns ns
${ }^{\text {t }}$ SET(CK, LE)	Clock to Latch Enable Set-Up Time	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & 2500 \\ & 3200 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1600 \end{aligned}$		ns ns
$t_{\text {LR }}$	Latch Enable to Reset Wait Time	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline-100 \\ & -100 \end{aligned}$		ns ns
$\mathrm{t}_{\text {SET (R, LE) }}$	Reset to Latch Enable Set-Up Time	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & 320 \\ & 400 \end{aligned}$	$\begin{aligned} & 160 \\ & 200 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{f}_{\text {MUX }}$	Multiplexing Output Frequency	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	1000			Hz
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input (Note 4)	5			pF

Note 4: Capacitance is guaranteed by periodic testing.
Typical Performance Characteristics

Typical Segment Current vs Output Voltage

Note: $\mathrm{V}_{\mathrm{D}}=$ Voltage across digit driver
 Dissipation

Typical Average Segment Current vs Segment Resistor Value

Switching Time Waveforms

MM74C925 • MM74C926 • MM74C927•MM74C928
Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 " Wide
Package Number N16E

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

18-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N18A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
